Copied to
clipboard

G = C428D14order 448 = 26·7

8th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C428D14, C4⋊C442D14, (C4×D28)⋊7C2, (C2×C28)⋊10D4, (C2×C4)⋊11D28, (C4×C28)⋊5C22, C4.70(C2×D28), D141(C4○D4), C4⋊D2842C2, C28.223(C2×D4), C42⋊C28D7, C22⋊D2829C2, D14⋊C451C22, D142Q847C2, (C2×D28)⋊52C22, (C2×C14).68C24, C4⋊Dic755C22, C22⋊C4.92D14, C14.12(C22×D4), C2.14(C22×D28), C22.19(C2×D28), (C2×C28).143C23, C71(C22.19C24), (C22×C4).365D14, C22.97(C23×D7), (C2×Dic14)⋊61C22, C22.D2832C2, (C22×D7).18C23, C23.156(C22×D7), (C22×C28).228C22, (C22×C14).138C23, (C2×Dic7).197C23, (C23×D7).104C22, (C22×Dic7).217C22, C2.9(D7×C4○D4), (D7×C22×C4)⋊2C2, (C2×C4×D7)⋊44C22, (C2×C4○D28)⋊17C2, (C7×C4⋊C4)⋊52C22, (C2×C14).49(C2×D4), C14.133(C2×C4○D4), (C7×C42⋊C2)⋊10C2, (C2×C4).575(C22×D7), (C2×C7⋊D4).99C22, (C7×C22⋊C4).100C22, SmallGroup(448,977)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C428D14
C1C7C14C2×C14C22×D7C23×D7D7×C22×C4 — C428D14
C7C2×C14 — C428D14
C1C2×C4C42⋊C2

Generators and relations for C428D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=ab2, dad=a-1, bc=cb, bd=db, dcd=c-1 >

Subgroups: 1716 in 330 conjugacy classes, 115 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C14, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C14, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C23×C4, C2×C4○D4, Dic14, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C22.19C24, C4⋊Dic7, D14⋊C4, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×C4×D7, C2×D28, C2×D28, C4○D28, C22×Dic7, C2×C7⋊D4, C22×C28, C23×D7, C4×D28, C22⋊D28, C22.D28, C4⋊D28, D142Q8, C7×C42⋊C2, D7×C22×C4, C2×C4○D28, C428D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C22×D4, C2×C4○D4, D28, C22×D7, C22.19C24, C2×D28, C23×D7, C22×D28, D7×C4○D4, C428D14

Smallest permutation representation of C428D14
On 112 points
Generators in S112
(1 104 36 58)(2 112 37 66)(3 106 38 60)(4 100 39 68)(5 108 40 62)(6 102 41 70)(7 110 42 64)(8 98 15 71)(9 92 16 79)(10 86 17 73)(11 94 18 81)(12 88 19 75)(13 96 20 83)(14 90 21 77)(22 78 52 91)(23 72 53 85)(24 80 54 93)(25 74 55 87)(26 82 56 95)(27 76 50 89)(28 84 51 97)(29 105 44 59)(30 99 45 67)(31 107 46 61)(32 101 47 69)(33 109 48 63)(34 103 49 57)(35 111 43 65)
(1 51 35 14)(2 52 29 8)(3 53 30 9)(4 54 31 10)(5 55 32 11)(6 56 33 12)(7 50 34 13)(15 37 22 44)(16 38 23 45)(17 39 24 46)(18 40 25 47)(19 41 26 48)(20 42 27 49)(21 36 28 43)(57 83 64 76)(58 84 65 77)(59 71 66 78)(60 72 67 79)(61 73 68 80)(62 74 69 81)(63 75 70 82)(85 99 92 106)(86 100 93 107)(87 101 94 108)(88 102 95 109)(89 103 96 110)(90 104 97 111)(91 105 98 112)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 30)(2 29)(3 35)(4 34)(5 33)(6 32)(7 31)(8 52)(9 51)(10 50)(11 56)(12 55)(13 54)(14 53)(15 22)(16 28)(17 27)(18 26)(19 25)(20 24)(21 23)(36 45)(37 44)(38 43)(39 49)(40 48)(41 47)(42 46)(57 100)(58 99)(59 112)(60 111)(61 110)(62 109)(63 108)(64 107)(65 106)(66 105)(67 104)(68 103)(69 102)(70 101)(71 91)(72 90)(73 89)(74 88)(75 87)(76 86)(77 85)(78 98)(79 97)(80 96)(81 95)(82 94)(83 93)(84 92)

G:=sub<Sym(112)| (1,104,36,58)(2,112,37,66)(3,106,38,60)(4,100,39,68)(5,108,40,62)(6,102,41,70)(7,110,42,64)(8,98,15,71)(9,92,16,79)(10,86,17,73)(11,94,18,81)(12,88,19,75)(13,96,20,83)(14,90,21,77)(22,78,52,91)(23,72,53,85)(24,80,54,93)(25,74,55,87)(26,82,56,95)(27,76,50,89)(28,84,51,97)(29,105,44,59)(30,99,45,67)(31,107,46,61)(32,101,47,69)(33,109,48,63)(34,103,49,57)(35,111,43,65), (1,51,35,14)(2,52,29,8)(3,53,30,9)(4,54,31,10)(5,55,32,11)(6,56,33,12)(7,50,34,13)(15,37,22,44)(16,38,23,45)(17,39,24,46)(18,40,25,47)(19,41,26,48)(20,42,27,49)(21,36,28,43)(57,83,64,76)(58,84,65,77)(59,71,66,78)(60,72,67,79)(61,73,68,80)(62,74,69,81)(63,75,70,82)(85,99,92,106)(86,100,93,107)(87,101,94,108)(88,102,95,109)(89,103,96,110)(90,104,97,111)(91,105,98,112), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,30)(2,29)(3,35)(4,34)(5,33)(6,32)(7,31)(8,52)(9,51)(10,50)(11,56)(12,55)(13,54)(14,53)(15,22)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(36,45)(37,44)(38,43)(39,49)(40,48)(41,47)(42,46)(57,100)(58,99)(59,112)(60,111)(61,110)(62,109)(63,108)(64,107)(65,106)(66,105)(67,104)(68,103)(69,102)(70,101)(71,91)(72,90)(73,89)(74,88)(75,87)(76,86)(77,85)(78,98)(79,97)(80,96)(81,95)(82,94)(83,93)(84,92)>;

G:=Group( (1,104,36,58)(2,112,37,66)(3,106,38,60)(4,100,39,68)(5,108,40,62)(6,102,41,70)(7,110,42,64)(8,98,15,71)(9,92,16,79)(10,86,17,73)(11,94,18,81)(12,88,19,75)(13,96,20,83)(14,90,21,77)(22,78,52,91)(23,72,53,85)(24,80,54,93)(25,74,55,87)(26,82,56,95)(27,76,50,89)(28,84,51,97)(29,105,44,59)(30,99,45,67)(31,107,46,61)(32,101,47,69)(33,109,48,63)(34,103,49,57)(35,111,43,65), (1,51,35,14)(2,52,29,8)(3,53,30,9)(4,54,31,10)(5,55,32,11)(6,56,33,12)(7,50,34,13)(15,37,22,44)(16,38,23,45)(17,39,24,46)(18,40,25,47)(19,41,26,48)(20,42,27,49)(21,36,28,43)(57,83,64,76)(58,84,65,77)(59,71,66,78)(60,72,67,79)(61,73,68,80)(62,74,69,81)(63,75,70,82)(85,99,92,106)(86,100,93,107)(87,101,94,108)(88,102,95,109)(89,103,96,110)(90,104,97,111)(91,105,98,112), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,30)(2,29)(3,35)(4,34)(5,33)(6,32)(7,31)(8,52)(9,51)(10,50)(11,56)(12,55)(13,54)(14,53)(15,22)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(36,45)(37,44)(38,43)(39,49)(40,48)(41,47)(42,46)(57,100)(58,99)(59,112)(60,111)(61,110)(62,109)(63,108)(64,107)(65,106)(66,105)(67,104)(68,103)(69,102)(70,101)(71,91)(72,90)(73,89)(74,88)(75,87)(76,86)(77,85)(78,98)(79,97)(80,96)(81,95)(82,94)(83,93)(84,92) );

G=PermutationGroup([[(1,104,36,58),(2,112,37,66),(3,106,38,60),(4,100,39,68),(5,108,40,62),(6,102,41,70),(7,110,42,64),(8,98,15,71),(9,92,16,79),(10,86,17,73),(11,94,18,81),(12,88,19,75),(13,96,20,83),(14,90,21,77),(22,78,52,91),(23,72,53,85),(24,80,54,93),(25,74,55,87),(26,82,56,95),(27,76,50,89),(28,84,51,97),(29,105,44,59),(30,99,45,67),(31,107,46,61),(32,101,47,69),(33,109,48,63),(34,103,49,57),(35,111,43,65)], [(1,51,35,14),(2,52,29,8),(3,53,30,9),(4,54,31,10),(5,55,32,11),(6,56,33,12),(7,50,34,13),(15,37,22,44),(16,38,23,45),(17,39,24,46),(18,40,25,47),(19,41,26,48),(20,42,27,49),(21,36,28,43),(57,83,64,76),(58,84,65,77),(59,71,66,78),(60,72,67,79),(61,73,68,80),(62,74,69,81),(63,75,70,82),(85,99,92,106),(86,100,93,107),(87,101,94,108),(88,102,95,109),(89,103,96,110),(90,104,97,111),(91,105,98,112)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,30),(2,29),(3,35),(4,34),(5,33),(6,32),(7,31),(8,52),(9,51),(10,50),(11,56),(12,55),(13,54),(14,53),(15,22),(16,28),(17,27),(18,26),(19,25),(20,24),(21,23),(36,45),(37,44),(38,43),(39,49),(40,48),(41,47),(42,46),(57,100),(58,99),(59,112),(60,111),(61,110),(62,109),(63,108),(64,107),(65,106),(66,105),(67,104),(68,103),(69,102),(70,101),(71,91),(72,90),(73,89),(74,88),(75,87),(76,86),(77,85),(78,98),(79,97),(80,96),(81,95),(82,94),(83,93),(84,92)]])

88 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P7A7B7C14A···14I14J···14O28A···28L28M···28AP
order122222222222444444444444444477714···1414···1428···2828···28
size11112214141414282811112244441414141428282222···24···42···24···4

88 irreducible representations

dim111111111222222224
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D7C4○D4D14D14D14D14D28D7×C4○D4
kernelC428D14C4×D28C22⋊D28C22.D28C4⋊D28D142Q8C7×C42⋊C2D7×C22×C4C2×C4○D28C2×C28C42⋊C2D14C42C22⋊C4C4⋊C4C22×C4C2×C4C2
# reps14222211143866632412

Matrix representation of C428D14 in GL4(𝔽29) generated by

21800
112700
00219
00228
,
1000
0100
00120
00012
,
212100
82600
0016
00028
,
212100
26800
00280
00028
G:=sub<GL(4,GF(29))| [2,11,0,0,18,27,0,0,0,0,21,22,0,0,9,8],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[21,8,0,0,21,26,0,0,0,0,1,0,0,0,6,28],[21,26,0,0,21,8,0,0,0,0,28,0,0,0,0,28] >;

C428D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_8D_{14}
% in TeX

G:=Group("C4^2:8D14");
// GroupNames label

G:=SmallGroup(448,977);
// by ID

G=gap.SmallGroup(448,977);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,184,675,570,80,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d=a^-1,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽